skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "González, José"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 24, 2026
  2. Stephan; Douglas (Ed.)
    Blue phase (BP) liquid crystals represent a fascinating state of soft matter that showcases unique optical and electro-optical properties. Existing between chiral nematic and isotropic phases, BPs are characterized by a three-dimensional cubic lattice structure resulting in selective Bragg reflections of light and consequent vivid structural colors. However, the practical realization of these material systems is hampered by their narrow thermal stability and multi-domain crystalline nature. This feature article provides an overview of the efforts devoted to stabilizing these phases and creating monodomain structures. In particular, it delves into the complex relationship between geometrical confinement, induced curvature, and the structural stability and photonic features of BPs. Understanding the interaction of curved confinement and structural stability of BPs proves crucially important for the integration of these materials into flexible and miniaturized devices. By shedding light on these critical aspects, this feature review aims to highlight the significance of understanding the coupling effects of physical and mechanical forces on the structural stability of these systems, which can pave the way for the development of efficient and practical devices based on BP liquid crystals. 
    more » « less
  3. Volatile organic compounds (VOCs) are constituents of marine ecosystems including coral reefs, where they are sources of atmospheric reactivity, indicators of ecosystem state, components of defense strategies, and infochemicals. Most VOCs result from sunlight-related processes; however, their light-driven dynamics are still poorly understood. We studied the spatial variability of a suite of VOCs, including dimethylsulfide (DMS), and the other dimethylsulfoniopropionate-derived compounds (DMSPCs), namely, DMSP, acrylate, and dimethylsulfoxide (DMSO), in waters around colonies of two scleractinian corals ( Acropora pulchra and Pocillopora  sp.) and the brown seaweed  Turbinaria ornata  in Mo’orean reefs, French Polynesia. Concentration gradients indicated that the corals were sources of DMSPCs, but less or null sources of VOCs other than DMS, while the seaweed was a source of DMSPCs, carbonyl sulfide (COS), and poly-halomethanes. A focused study was conducted around an A. pulchra  colony where VOC and DMSPC concentrations and free-living microorganism abundances were monitored every 6 h over 30 h. DMSPC concentrations near the polyps paralleled sunlight intensity, with large diurnal increases and nocturnal decrease. rDNA metabarcoding and metagenomics allowed the determination of microbial diversity and the relative abundance of target functional genes. Seawater near coral polyps was enriched in DMS as the only VOC, plus DMSP, acrylate, and DMSO, with a large increase during the day, coinciding with high abundances of symbiodiniacean sequences. Only 10 cm below, near the coral skeleton colonized by a turf alga, DMSPC concentrations were much lower and the microbial community was significantly different. Two meters down current from the coral, DMSPCs decreased further and the microbial community was more similar to that near the polyps than that near the turf alga. Several DMSP cycling genes were enriched in near-polyp with respect to down-current waters, namely, the eukaryotic DMS production and DMS oxidation encoding genes, attributed to the coral and the algal symbiont, and the prokaryotic DMS production gene dddD , harbored by coral-associated Gammaproteobacteria . Our results suggest that solar radiation-induced oxidative stress caused the release of DMSPCs by the coral holobiont, either directly or through symbiont expulsion. Strong chemical and biological gradients occurred in the water between the coral branches, which we attribute to layered hydrodynamics. 
    more » « less
  4. Abstract To advance justice, equity, diversity, and inclusion in science, we must first understand and improve the dominant-culture frameworks that impede progress and, second, we must intentionally create more equitable models. The present authors call ourselves the ICBOs and Allies Workgroup (ICBOs stands for independent community-based organizations), and we represent communities historically excluded from the sciences. Together with institutional allies and advisors, we began our research because we wanted our voices to be heard, and we hoped to bring a different perspective to doing science with and not on communities. We created a community framework to guide our research and we led all aspects of our work, from creating research protocols to analyzing and interpreting the data to disseminating the results. We share our research framework, methods, and results so that science institutions can better understand how to intentionally create more equitable research partnerships with our communities. 
    more » « less
  5. High-energy cosmic rays that hit the Earth can be used to study large-scale atmospheric perturbations. After a first interaction in the upper parts of the atmosphere, cosmic rays produce a shower of particles that sample it down to the detector level. The HAWC (High-Altitude Water Cherenkov) gamma-ray observatory in Central Mexico at 4,100 m elevation detects air shower particles continuously with 300 water Cherenkov detectors with an active area of 12,500 m2. On January 15th, 2022, HAWC detected the passage of the pressure wave created by the explosion of the Hunga volcano in the Tonga islands, 9,000 km away, as an anomaly in the measured rate of shower particles. The HAWC measurements are used to determine the propagation speed of four pressure wave passages, and correlate the variations of the shower particle rates with the barometric pressure changes. The profile of the shower particle rate and atmospheric pressure variations for the first transit of the pressure wave at HAWC is compared to the pressure measurements at the Tonga island, near the volcanic explosion. By using the cosmic-ray propagation in the atmosphere as a probe for the pressure, it is possible to achieve very high time-resolution measurements. Moreover, the high-altitude data from HAWC allows to observe the shape of the pressure anomaly with less perturbations compared to sea level detectors. Given the particular location and the detection method of HAWC, our high-altitude data provides valuable information that contributes to fully characterize this once-in-a-century phenomenon. 
    more » « less
  6. Krattenthaler, Christian; Thibon, Jean-Yves (Ed.)